Quickstart
Quickly start deploying a production-ready core infrastructure stack for your LLM applications
This guide will walk you through setting up a production-ready core infrastructure stack for your LLM Application with minimal effort. In just a few steps, you’ll be able to setup Universal API, AI routing, AI Gateway and Observablity to track and analyze the performance and usage of your Large Language Model (LLM) applications.
Deploy AI studio
Preparing docker environment
version: '3.8'
services:
postgres:
image: postgres:13
environment:
- POSTGRES_DB=aistudio
- POSTGRES_USER=aistudio
- POSTGRES_HOST_AUTH_METHOD=trust
volumes:
- postgres:/var/lib/postgresql/data
ports:
- 5432:5432
healthcheck:
test: [ "CMD-SHELL", "pg_isready -U aistudio" ]
interval: 30s
timeout: 30s
retries: 3
restart: always
redis:
image: redis:7.2-alpine
ports:
- 6379:6379
command: redis-server --save 20 1 --loglevel warning
volumes:
- redis:/data
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 1s
timeout: 3s
retries: 30
restart: always
clickhouse:
image: clickhouse/clickhouse-server:24.1.5
volumes:
- clickhouse:/var/lib/clickhouse
ports:
- 9000:9000
- 8123:8123
restart: always
migrate:
image: missingstudio/ai:dev
command: ["migrate"]
environment:
- GATEWAY_POSTGRES_URL=postgres://aistudio@postgres:5432/aistudio?sslmode=disable
depends_on:
- postgres
aistudio:
image: missingstudio/ai:dev
environment:
- GATEWAY_APP_HOST=0.0.0.0
- GATEWAY_APP_PORT=8080
- GATEWAY_REDIS_HOST=redis
- GATEWAY_REDIS_PORT=6379
- GATEWAY_POSTGRES_URL=postgres://aistudio@postgres:5432/aistudio?sslmode=disable
command: ["start"]
ports:
- 8080:8080
depends_on:
- redis
- postgres
- clickhouse
- migrate
volumes:
redis: {}
postgres: {}
clickhouse: {}
Launch AI studio gateway server
docker-compose up -d
Generate an API Key
With AI studio running, the next step is to generate an API key for resource access from AI studio
To generate your first API key, you can use the following command:
curl --request POST \
--url http://127.0.0.1:8080/api/v1/keys \
--header 'Content-Type: application/json' \
--data '{
"name": "Base"
}'
Save the API Key
Remember to include this API key in the X-Ms-Api-Key
header for all future API interactions
You’re geared up and ready to go! 🚀
Following these steps should have you AI studio up and running to power up LLMOps for your LLM appplications. If you have any questions or need support, reach out to our Discord Community.
Was this page helpful?